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Abstract 

Transpower’s work order management system contains multiple descriptions entered manually by our 

service providers for equipment defects. These work order descriptions are rich in information, but they are 

unstructured and problematic for performing meaningful and reliable statistical analysis. With the large 

volume of open work orders (~60,000), manually processing and interpreting them is not practical. Recent 

advances in machine learning methods for extracting information from natural language have enabled us to 

automatically interpret work order descriptions, categorising them systematically and consistently.  

 

In this paper, we will describe the process of manually entered textual data to estimate the likelihood of 

failure and the cost for undertaking each work order.  This involves cleaning the free-text information, which 

may contain spelling mistakes, abbreviations, and a wide range of industry-specific vocabulary used to 

describe defects.  We then constructed a set of hierarchical machine learning models to map work order 

descriptions to an asset and defect ontology created in parallel with the modelling process. The asset and 

defect ontologies describe the asset at risk (i.e. Circuit Breaker), the component at risk (i.e. Stand) and the 

risk keyword (i.e. Corroded).  Once the ontologies were established, we assigned each asset and defect 

pair with a likelihood of failure for five different failure consequence dimensions – service performance, 

direct cost, public safety, worker safety, and environmental impact. We also used a machine learning 

process to predict the estimated cost for each work order. The likelihood of failure and failure consequence 

give a relative risk value for each work order, which along with the estimated cost was mapped to an overall 

work order priority. This enables risk-based prioritisation of work orders. 

 

We also describe an innovative method for capturing organisation-wide experiential knowledge for use in 

training a machine learning system. This was used to aggregate subjective evaluations of the likelihood of 

failure for an asset/defect combination into a quantitative estimate. 

 

 

 

 

 

 

 

 

 

 

 

*An ontology is a set of categories along with a description of their properties and the relationships between them, 

also referenced as “clusters”.  



   
 

   
 

Introduction 

The goal of the Predictive Maintenance (PDM) project described in this work is to determine a risk rating for 

each work order, which is then used for prioritisation of work orders. Work orders describe possible 

preventative maintenance actions and are typically generated by maintenance contractors.  

 

Currently, our PDM work order priority is determined by service providers in collaboration with our Service 

Delivery Managers. This approach is subjective and lacks nation-wide consistency. Historically, there was 

also a lack of requisite knowledge/data related to the criticality (a.k.a. consequence of failure) caused by 

the defects on our network.  

 

As per the Corporate Risk Matrix (refer to Figure 1), we introduce a two-dimensional risk-based approach 

to prioritising PDM work orders: by the likelihood of failure and by criticality. 

 

 
 

Figure 1: Transpower's Corporate Risk Matrix 

 

With the current relatively large volume of open work orders (~60,000), their manual processing and 

interpretation does not present a practical feasible option. While they contain structured data, most of the 

information is written into unstructured text fields, making them difficult to use for reliable statistical 

analysis. Recent advances in machine learning (ML) have enabled us to automate the interpretation of 

work order descriptions, performing this systematically and consistently. 

Methodology 

Overview 

The risk rating for a work order requires two dimensions:  Likelihood of Failure and Criticality. To generate 

quantitative values for likelihood and criticality for each work order, we first generated an asset ontology 

describing the asset at risk (i.e. Circuit Breaker) and the component at risk (i.e. Stand), and a defect (or 

risk) ontology describing the asset condition (i.e. Corroded).  

 

Building this asset ontology was an iterative process, moving back and forth between text summarization 

algorithms and expert knowledge. We also developed a data-specific text normalization process, correcting 

spelling mistakes and standardizing a range of industry-specific abbreviations and vocabulary used to 

describe defects. 



   
 

   
 

 

Each work order is related to an asset, and the asset’s network location has a criticality associated with it. 

The criticality for an asset was developed outside of this workstream hence the calculations and details are 

not presented in this paper but available in [1].  In summary, criticality is the monetised cost following asset 

failure and the following dimensions were considered: 

 

1. Service Performance – the lost load impact on the network when the asset fails 

2. Direct Cost – the repair or replacement cost to reinstate the asset/network to its designed 

configuration following asset failure 

3. Public and Workplace Safety – the impact on the safety of personnel or public that is near the 

asset following failure 

4. Environmental – the impact on the environment when equipment fails causing a fire, oil leak or 

SF6 leak 

5. Compliance – the financial implication following a regulation breach  

 

We then generated a likelihood of failure for each work order, for five different failure consequence 

dimensions. The likelihood of failure for each dimension for each work order is derived by using a 

supervised machine learning system to categorise a work order into asset and defect ontologies, and to 

assign a likelihood of failure for each asset and risk combination. The risk rating is then calculated based 

on the likelihood of failure and its criticality. 

 

The overarching process is described as per the following and in figure 2: 

 

1. Training data is required as an input for supervised machine learning. Using the historical and open 

work orders, we defined an asset ontology and a defect ontology, and manually annotated the asset 

and risk categories for 10,000 historical work orders. This was an interactive process, using early 

models to target annotation to work orders not yet classified correctly. 

2. Two hierarchical classification models were trained to determine the asset and risk categories of a 

worker order from the asset and risk ontologies. The models used ‘cleaned’ text from the work order 

descriptions and a handful of categorical features as input. 

3. After training the models, all 60,000 open work orders and their descriptions were passed through 

the models to determine their asset and risk categories. In parallel, the models were also used on 

historical work order data.  The historical work order data contains actual costs, and regression was 

used to determine the unit cost as a function of the asset category and location. 

4. The asset and risk ontology combinations (e.g. Circuit Breaker Stand – Corroded) required 

engineering input to be converted into a Likelihood of Failure for each criticality dimension.  First, 

the relative ranking of every pair of asset/risk categories was internally crowd-sourced, with 

engineers “voting” which asset ontology was higher, in terms of Likelihood of Failure, compared to 

other ontologies.  Thousands of relative comparisons were then converted into an absolute value for 

each asset category/risk category combination. This was done for each criticality dimension as 

asset and risk combinations (i.e. Tower – Steel – Rusty) would have different likelihoods of failure 

depending on the criticality dimension (i.e. direct cost vs. service performance). 

5. The risk rating is then calculated based on the likelihood of failure and its criticality. 



   
 

   
 

 
Figure 2. Graphical depiction of process and methodology 

Determining Asset and Defect Categories for a Work Order 

Work Order Data 

Work orders describe possible preventative maintenance actions and are typically generated by 

maintenance service providers. While they contain structured data, most of the information is written into 

free text fields. These free text fields are entered manually and are unstructured, making them difficult to 

use for reliable statistical analysis, but are the best source of information about the asset and defect 

described by the work order. This information is summarized in Table 1. 

 

Field Description 

Work Order Identifier Unique work order ID. 

Summary Text Field Data field for a summary of the work order. 
Entered by an engineer when the work order is created. 

Description Text Field Data field for a longer description of the work order. 
Can be changed and updated as the work order is completed. 

System/Network 
Location 

Location of the work order, which can be one of Sub Device Position, Device 
Position, or Site, depending on the level of detail. 

Asset Category The general category of the asset targeted by the work order, such as 
Building, Tower, or Conductors & Accessories. 

Physical Location Fields Used for cost estimation. 

 

Table 1. Work order data. Only fields relevant to this work are shown. 



   
 

   
 

Categorising Work Orders by Asset and Defect 

Exploration of the text data using topic modelling showed clear groupings of assets and defects described 

in the work orders. Using these groups and expert knowledge, we created an asset ontology consisting of 

an asset and a component. We also created a risk or defect ontology describing the defect in the work 

order. In the rest of this work, we describe the asset and the component for a work order in full, and 

describe the risk or defect using a keyword identifier. 

 

Work Order Description Asset Component  Risk Category Risk Keyword 

… STR … bolt … needs tightening Tower Bolt Non-veg Loose 

… tower … bolts are corroded … Tower Bolt Non-veg Corroded 

… corrosion on tower bolts … Tower Bolt Non-veg Corroded 

CB insulator … mouldy Circuit Breaker Housing Non-veg Contaminated 

Cracked insultor on circuit breaker Circuit Breaker Housing Non-veg Damaged 

Conductor … spacer … corroded Conductor Spacer Non-veg Corroded 

Spacer … missing Conductor Spacer Non-veg Missing 

Conductor … trees … close to line Conductor Line Veg Fall Distance 

 

Table 2. Example assignment of work orders to the asset and risk ontologies 

 

We then built a machine learning system to determine the asset, component, and risk keyword categories 

for work orders, using the text descriptions as input. The machine learning system takes a set of training 

data (text descriptions for work orders and manually assigned categories) and uses this training data to 

build multiple models that can automatically generate categories for new work orders. The machine 

learning process is shown in Figure 3. The models are trained using training data and then deployed for 

inference on unseen work orders. 

 

 
 

Figure 3. Machine Learning process 

 

The free text fields contain many spelling mistakes and abbreviations, as well as inconsistent grammar. 

Therefore, the text was pre-processed prior to use in modelling. This pre-processing step included 

correcting spelling mistakes, replacing common acronyms, removing stop words and low frequency words, 

and lemmatization [2].  

 

We then built a two hierarchies of classification models to predict the asset and component, and the defect 

for each work order. Each of the individual models used in this multi-stage approach embed the summary 

and description text fields in a vector space and use regularized logistic regression as the classifier. 

 

The first defect model classified whether the work order was related to vegetation growth. If true, further 

models classified whether the work order was related to a risk keyword within the vegetation category, for 



   
 

   
 

example, sag distance, swing, or fall distance1. If false, further models classified whether the work was 

related to one of many other possible risk keywords. The second hierarchy of models classified which asset 

type and which component type was described by the work order.  

Estimating Work Order Price 

As well as the open work orders, the work order dataset also contains four years of completed work orders, 

containing additional information including completed date, total cost, material cost, and service cost.  

 

We developed a regression model to estimate the costs for a work order based on a set of categorical 

features related to the asset and component category, the defect category, the service area, and region. 

Regional information is included due to the different rates different service providers charge. This model 

was trained on the completed work orders. The output from the regression model, predicted cost, is used 

alongside the risk rating to help guide decisions regarding budget allocation, as described below. 

Estimating Likelihood of Failure 

We then determined likelihoods of failure for each work order, should the work order be left untended. The 

likelihood is determined for five risk dimensions defined in the Transpower risk matrix: service performance, 

direct cost of replacement, public safety, worker safety, and environmental safety, and are based on expert 

judgement, as no training data exists to train a machine learning model. 

 

The likelihoods of failure above are determined for each of the asset and defect combinations identified 

previously. As there are approximately 900 asset and defect combinations, asking individual engineers to 

assign each combination a likelihood, or rank all asset-defect combinations directly would likely lead to 

inconsistent outcomes as engineers are biased to their own area of responsibility.  

 

To minimise this issue, we built a web application for collecting crowdsourced comparison tool to collect 

pairwise comparisons of randomly selected defects from many engineers, and used an algorithm based on 

the ELO rating system [0] to compute an overall ranking. The web application allowed the collection of 

multiple comparisons between each pair of asset and defect combinations, from dozens of engineers, as 

well as collecting metrics determining the time spent on each comparison. 

 

The integer rank for each asset and defect combination was then mapped to a scalar interval for each risk 

dimension, representing likelihood of a failure in that risk dimension. The bounds of this scalar range were 

chosen manually to be within the corporate scale of 0.003 to 3 outcomes per/year. 

  

                                                
1 These terms relate to trees within the spacial limits of or the potential to be in physical contact with transmission lines 
as specified in vegetation regulations 



   
 

   
 

 
 

Figure 4. Cluster comparison tool web UI. 

Assigning Failure Severity 

Criticality Data 

Asset criticality is the monetised cost of an asset failure across each of the five dimensions mentioned 

previously. Transpower has an existing criticality value mapped to a network location identifier. This 

criticality data was matched to the work order data through these network location identifiers.  Work orders 

without any network location identifiers were assigned based on asset category or special cases such as 

bird related criticality or compliance criticality. Any other work orders with no matches are not assigned a 

criticality, we are working on reducing the number of these occurrences.  

 

After all steps briefly described above, each currently open work order now has a criticality value, a 

likelihood value, and an estimated price. 

Prioritisation 

Work orders are prioritised according to a final priority score or risk rating, which is the “sum of likelihood x 

severity over risk dimensions”. We computed the final work order priority or risk rating based on the 

following formula for each risk dimension  

 

Sum (all risk dimensions)  

rescaled likelihood (on the scale of 0.003 to 3 rate of outcomes per/year) * log(1 + criticality) > 

<typeset as formula> 

 

The risk rating obtained was scaled to the range of 0 to 1000 to give a consistent and interpretable number 

that can be used to make decisions regarding work order scheduling based on risk rating / priority. This 

rescaling is relative to the maximum asset criticality, which is unlikely to change. 

 



   
 

   
 

Results and Discussion 

The capability to conduct rapid proof of concept and iteration on early prototype systems that accomplished 

the end to end process with limited accuracy and precision (days) was useful for achieving buy-in. 

Reaching the end of the prototyping and proof of concept phase required overall 3 months.  

 

The asset and defect ontologies were developed as a way of grouping related work orders together to 

manually assign likelihood values. These ontologies were developed for this work, and the outcome was to 

categorise both the assets and the defects into two-level hierarchies. This size of the groups created affects 

the accuracy and precision of the supervised machine learning classification and the amount of manual 

work required to set up the system. 

 

The defect ontologies were created in an iterative process, involving data exploration, ontology definition, 

modelling, examining model output, and repeating this process. Data exploration techniques included topic 

modelling such as latent Dirichlet allocation, clustering using distance metrics such as bag-of-words based 

BM-25 and cosine similarity using word embedding vectors. There was also some difficulty in assessing 

stations assets as each type has a wide variety of components compared to transmission line assets. 

 

Using a machine learning system in practice involves creating a dependency on training data that is not 

present in a standard software system. Managing this data quality during the creation of a new system and 

as the system is used over time, potentially many years, is a crucial part of the overall project plan. 

Maintaining a training data audit trail was an important part of the model development process, both for 

understanding the biases and limitations in the model. During deployment of the model, a documented 

process was created allowing engineers to retire old training data, create new training data reflecting 

ongoing changes in the operational environment, and retrain the model using these new data sets. 

Implementation 

A software system based on the work described is currently being deployed within Transpower, with 

provisions for ongoing auditing of training data, retraining based on updated data as the underlying 

information shifts over time. Service providers are also being guided to provide accurate and more 

informative work order descriptions, giving the machine learning system more data to turn into more 

accurate category, cost, and risk predictions.  

 

Future work will also include exploring expanding the defect ontology to include sub-components for 

substation assets and fine tuning it to infer different levels of corrosion. 

Conclusions 

We have demonstrated the utility of a machine learning approach for automatically assigning risk and cost 

to open work orders based on unstructured text, using a training dataset comprised of historical data and 

targeted data collection. As the information in new work orders changes over time new training data can be 

created, and old training data retired, and the model re-trained.  

 

We have also described a method for collecting industry and model-specific training data using a crowd-

sourcing web application. The data generated from this application was combined with a tournament 

ranking algorithm to generate an absolute likelihood value for each node in the asset ontology. 
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